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Abstract
The problem of visualizing huge amounts of data is well known in informa-
tion visualization. Dealing with a large number of items forces almost any kind
of Infovis technique to reveal its limits in terms of expressivity and scalability.
In this paper we focus on 2D scatter plots, proposing a 'feature preservation'
approach, based on the idea of modeling the visualization in a virtual space
in order to analyze its features (e.g., absolute density, relative density, etc.). In
this way we provide a formal framework to measure the visual overlapping,
obtaining precise quality metrics about the visualization degradation and de-
vising automatic sampling strategies able to improve the overall image quality.
Metrics and algorithms have been improved through suitable user studies.
Information Visualization (2006) 5, 95--110. doi:10.1057/palgrave.ivs.9500122
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Introduction
Visualizing a large data set likely produces a noisy image: many pixels
become overplotted, losing useful data insights. In this paper we attack this
problem focusing on 2D scatter plots, a very useful and widely adopted
visualization technique. In particular, we analyze data density, one of the
main clues the user can grasp from such a kind of visualization and, in
order to reduce overplotting, we sample the data preserving, as much as
possible, density-related aspects.
We address the overplotting problem in two steps: first we provide a

formal framework to measure the degradation affecting a given visualiza-
tion, then, upon these measures, we sample the data improving the image
quality.
To measure the image degradation we define a formal model that es-

timates the amount of overlapping elements in a given area and, conse-
quently, the remaining free space. These pieces of information give an ob-
jective indication of what is eventually visualized on the physical device
and we can compute the quality of the displayed image.
To reduce overplotting we employ different sampling techniques taking

into account how much and where to sample in order to preserve interest-
ing features. In fact, the formal model we discuss in the paper gives precise
indications on the right amount of data sampling needed to produce a rep-
resentation preserving the most important image characteristics. We use
two different sampling techniques: best uniform sampling and non-uniform
sampling. Best uniform sampling tries to present the user with as many
density differences as possible, preserving the magnitude of such differ-
ences; non-uniform sampling increases the number of density differences
available on the screen altering their magnitude.
To improve our sampling algorithms we analyze the way users perceive

density differences through a user study that investigates the corres-
pondence between numerical density differences and users’ perception of
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density differences. This allows for fine tuning our met-
rics, considering perceptual density differences instead of
numerical ones.
Moreover, as discussed in the section on Extensions of

our approach, using the tool we developed for testing our
metrics and algorithms, we discovered that the availability
of different sampling techniques, revealing different data
insights, facilitates interactive explorative analyses.
Summarizing, the contribution of the paper is twofold:

(1) it presents a novel model that allows for defining and
measuring data density both in terms of a virtual space
and of a physical space;

(2) it defines user-validated quality metrics that allow for
(a) estimating the image degradation and (b) driving
novel automatic sampling techniques.

Paper organization
The paper is structured as follows: the next section ana-
lyzes related works, the section on Modeling density de-
scribes the model we use to characterize overplotting and
density, followed by the section that describes the user
study; the succeeding sections introduce several quality
metrics, describe our sampling techniques, report imple-
mentation issues, outline possible extensions of our ap-
proach, respectively, and the final section presents some
conclusions.

Related work
Themain objective of our investigation is to provide mod-
els and techniques to deal with overplotting, exploiting
quality metrics and sampling strategies. In the following
we first report on related perceptual studies, then we dis-
cuss metric proposals for Infovis, and, finally, we provide
on overview on techniques to cope with overplotting.

Density perception
Central to our purposes is the visual phenomenon called
‘numerosity’ which explains how people perceive relative
densities. When an observer has to judge howmany items
are on a scene, and there are toomany objects and/or time
is too short to count, a person is still able to provide an
approximate number which is called numerosity. Many
studies have been conducted on the subject, presenting
involved people with short sequences of random black
dots and asking them to recognize the one containing
more items.
Studies show that the spatial configuration of dots in-

fluences the perception of density so that, for example,
two figures with the same number of dots can be per-
ceived as having a different number of items. The occu-
pancy model partially explains these effects providing a
model1 in which each dot has an area of influence upon
its neighborhood; the regions where the areas overlap and

exceed a threshold value are considered as being filled
with dots. The size of the area occupied by the dots seems
to be irrelevant in the perception of numerosity (but it has
been tested on a limited range of values),2 whereas the di-
mension of dots seems to influence it in a inverse relation
between size and numerosity.3 Another relevant factor is
the color. Beaudot and Mullen4 demonstrate in that there
is a ‘consistent bias in favor of blue-yellow stimuli which
are perceived as significantly more dense than red-green
and achromatic stimuli’.
Various studies aimed at finding threshold values, that

is, given a certain number of base items, to discover how
many additional ones are necessary to see a difference,
and how this difference changes with the number of base
items. Results show that numerosity increases with the
number of items but not linearly,5 as often happens with
psychophysics measures.6 A peculiarity of numerosity
judgement is that it does not follow the Weber’s law1 as
one might expect: the ratio between the number of addi-
tional items necessary to see a difference and the number
of items in the reference pattern is not constant; actually
it decreases as the number of items increases. This means
that the more we add items, the less is the percentage of
new items needed to see a difference.
Without pretending to draw generalizable results for

vision science or to extend the theory on numerosity,
we conducted a series of experiments that resembles those
classic studies, but targeted at our peculiar needs. The
main aim of our experiments is to tweak our algorithms
in order to take into account perceptual density differ-
ences in place of plain numeric ones. The description
of our motivations, peculiar needs, and differences with
existing studies are in the section on User study, where
the experiment is described in detail.

Metrics for information visualization
Providing quality metrics is a well-known Infovis need:
there is the necessity to objectively assess the quality of a
visualization through formal measures.7

First attempts come from Tufte8 who proposes a set
of measures to estimate the ‘graphical integrity’ of static
(i.e., paper based) representations. Measures like the lie
factor, that is the ratio between the size of an effect, as
shown graphically, to its size in the data, or data density
that takes into account the size of the graphic in rela-
tion to the number of displayed data, are examples of
his attempt to systematically provide indications about
the quality of the displayed image. Brath,9 starting from
Tufte’s proposal, defines new metrics for static digital
3D images. He proposes metrics such as data density

1 The difference threshold (or ‘just noticeable difference’) is the
minimum amount by which stimulus intensity must be changed
in order to produce a noticeable variation in sensory experience.
Weber’s Law says that the size of the just noticeable difference
is a constant proportion of the original stimulus value (Source:
http://www.usd.edu/psyc301/WebersLaw.htm).
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(number of data points/number of pixels) that recall
Tufte’s approach. He provides metrics aiming at measur-
ing the visual image complexity like the occlusion percent-
age, or the number of identifiable points, that is the number
of visible data points whose position is identifiable in re-
lation to every other visible data point. These metrics are
interesting and are appropriate for characterizing digital
images. However, as stated by the author, they are still
immature. Another approach is that of using benchmarks
to evaluate visualizations. Grinstein et al.10 proposes to
run some benchmarks against predefined data sets and
tasks to evaluate and compare different visual techniques.
While themain goals of the abovemethod is to estimate

a general visualization goodness or to compare different
visual systems, we mainly aim to assess the accuracy of a
specific visualization, dealing with pixels and data points.
Moreover, we provide precise quality metrics that can be
directly exploited by recovery algorithms. In the section
on Quality metrics we formally define such metrics and
we show how to use them in practice to take quantitative
decisions on corrective actions.

Dealing with overplotting
Overplotting is a common problem that affects many user
interfaces: as a display hosts too many objects, noisy vi-
sualizations may arise. It is hard to find general recovery
strategies and to provide formal definitions of the prob-
lem because the spectrum of possible degradations is fairly
broad and difficult to formalize.
The problem of how to deal with highly dense visu-

alizations with overlapping items has been directly and
indirectly addressed by a variety of proposals. Some of
them deal with visualization overviews, especially when
the screen displays a large number of items, while others
try to resolve the problem locally, that is, focusing on in-
teresting subregions.
A common solution is the use of density maps: visual-

izations in which data density is mapped to color inten-
sity to communicate density variations. There exist some
variants of the technique. A first attempt is by Becker11

where relational data are previously binned and aggre-
gated to compute discrete regions of the screen where data
density is depicted through volume rendering. The result
is a 3D point-based visualization (as in the early attempts
to project n-dimensional data in three-dimensional pro-
jection provided in PRIM912) with variable intensity and
color. An almost identical approach is used by Yang,13

where the method is used in conjunction with clustering
and interactive picking and brushing to allow effective
and efficient exploration. Another solution is the Informa-
tion Mural,14 a general purpose technique that maps data
overplotting to pixel’s intensity or color to communicate
data density. The method permits to cope with data over-
plotting in a variety of visualizations like time series, scat-
ter plots, maps, etc. A similar approach can also be used
when the primary visual mark is not a dot but a line, as
in parallel coordinates.15

Clustering resolves the problem through abstra-
ction.16,17 It aggregates similar data items in groups, so
that a single visual mark represents a series of objects
rather than one single data item, thus visual density is
reduced. Hierarchical parallel coordinates uses hierarchi-
cal clustering on parallel coordinates:18 each cluster is
represented by a single poly-line with a surrounding halo
that depicts its size19,20.
Jittering is used in commercial systems like Spotfire;21

the overlapping items are displaced around their original
position so that they become visible.22 Trutschl et al.
propose a smart jittering technique:23 jittering is applied
in a way that items that are similar in the n-dimensional
data space stay closer when moved from their original
position. PixelMap24,25 uses the same idea of displacing
items around their original position together with a con-
trolled distortion. It is used in geographical applications
where each pixel represents the measure of some variable
in a given location.
Similarly, pure distortion techniques26–28 can be effec-

tively employed to resolve overplotting locally but they
are almost useless in case of heavily crowded screens.
Zoom can also be useful as a way to increase resolution for
a limited area of the screen, but the overall context is often
lost and complex interaction to navigate from one area
to another may be required.29 Constant density displays
partially overcome the problem30,31 presenting more de-
tails within less-dense areas, and less details within denser
ones, allowing the screen space to be optimally utilized.
Sampling is used by Ellis and Dix32,33 as a way to reduce

density as well. Since sampling reduces the number of
displayed elements, the overall visual density decreases
and the visualization becomes more intelligible. Uniform
sampling has the interesting benefit that data features like
distribution and correlation are preserved, allowing ‘to see
the overall trends in the visualization but at a reduced density’.

Positioning our approach
Our approach differs from the discussed proposals in three
main aspects:

(1) It defines a sound model for defining, both in a
virtual and physical space, several metrics specifically
intended for digital images; such metrics allow for
providing some quantitative information about an
image quality;

(2) It exploits such results to drive sampling algorithms
preserving specific visual characteristics;

(3) Both metrics and algorithms are based on perceptual
user studies.

As a consequence, our proposal presents some unique
features, described in the following.

• Measuring lost features. Our formal framework and qual-
ity metrics allow for discovering, in a quantitative way,
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whether relevant data characteristics are preserved in
the actual visualization; as an example, the metric
PLDDr, described at the end of the section on Quality
metrics, measures the data density differences hidden
from the user.

• Providing a detailed overview without altering the image size.
Zooming, displacement, sampling, and density maps
are commonly used to reduce overplotting. Displacing
elements introduces some errors in the representation,
while zooming causes to lose the overall image percep-
tion, unless the zoom is applied to the whole image
(in this case, the screen dimension represents the limit
of this approach). Sampling and density maps may ef-
fectively improve the image readability without enlarg-
ing it; however, if the data present quite different den-
sity values these techniques are not very effective: faint
zones may disappear while making the most dense areas
readable and little density differences are hardly perceiv-
able by the user. Our non-uniform sampling technique,
described in a later section, addresses exactly this prob-
lem, providing a data overview preserving faint zones
and showing details in denser areas, without altering
the image size.

• Automatic image treatment. The availability of quality
metrics allows to automatically ameliorate the image.
As an example, it is possible to compute the optimum
sampling ratio (w.r.t. a quality function) applying it to
the imagewithout user intervention (see section onUni-
form sampling). As another example, to optimize the
screen usage, it is possible to compute the minimum im-
age size that guarantees some quality threshold (see sec-
tion on Quality metrics).

Finally, our approach can be used together with other tech-
niques, producing interesting synergies. As an example,
consider the gray scale density map presented in Informa-
tionMural.14 As stated by the authors ‘Distinguishing fine
variations or level of detail in a gray-scale is difficult for
people’; applying our approach together with gray-scale
could make Information Mural, or similar methods, more
effective; similarly, applying together zoom and sampling
reduces the amount of needed zoom, helping the user in
not losing the context.

Modeling density
In this section we present a statistical framework charac-
terizing the distortion produced by data overplotting, a
typical problem that happens when a continuous space is
represented in a discrete one.
The formal environment addresses two different objec-

tives:

(1) It allows for defining in a clear way all the image fea-
tures considered in our approach, that is, data density
and represented density introduced at the end of this
section;

(2) It allows for foreseeing the number of active pixels
and collisions resulting by applying a given amount

Figure 1 Plotting mail parcels: an example of a visualization
with a high number of overlapping items.

of sampling on the actual data set. We will use such
forecasts to drive the sampling algorithms described
in the section on Sampling the data set.

We consider a 2D space in which we plot items by asso-
ciating a pixel to each data element and the pixel position
is computed mapping two data attributes on the spatial
coordinates. As an example, Figure 1 shows about 160,000
mail parcels plotted on the x–y plane according to their
weight (x-axis) and volume (y-axis). Note that, even if the
occupation of the screen is very little, the area close to
the origin is very crowded and presents a great number of
collisions.
In the following we derive a function that estimates the

amount of colliding points and, as a consequence, the
amount of free available space. More formally, two data
points are in collisionwhen their projection is on the same
physical pixel (likely for rounding issue); each time two
points collide on the same pixel we count a collision, even
if the pixel has been involved in other collisions: that is,
if n data points collapse on the same pixel we count n−1
collisions.
In order to calculate the estimation function, we imag-

ine to toss n data points in a completely randomway (that
is, the probability for each point to fall on a certain po-
sition is constant for any position) on a fixed area of p
pixels. This assumption is reasonable if we conduct our
analysis on small areas in which the real data distribution
does not show large variations.
We consider the following parameters:

• n is the number of points we are plotting;
• p is the number of available pixels;
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• k is the number of collisions;
• d is the number of free pixels.

The probability of having exactly k collisions plotting n
points on an area of p pixels, Pr(k, n, p), is given by the
following formula:

PERM
[(

p
n−k

)(
n−k+k−1

k

)]

pn , if n�p and k ∈ [0, n− 1] 0,
or n>p and k ∈ [n− p, n− 1],
if k�n
or n>p and k ∈ [0, n− p− 1].

The function returns zero if k�n because it is impossible to
have a number of collisions equal or greater than plotted
points. Moreover, the probability is equal to zero if n>p
and k ∈ [0, n− p−1]: because we are plotting more points
than available pixels, we must necessarily have at least
n− p− 1 collisions. For example, if we have an area of 64
pixels and we plot 66 points, we must necessarily have at
least two collisions, so Pr(0,66,64)=0 and Pr(1,66,64)=0.
The basic idea of the formula is to calculate, given p

pixels and n plotted points, the ratio between the number
of existing configurations with exactly k collisions and the
number of possible total configurations.

Pr(k, n, p)= number of config with exactly k collisions
number of total configurations

.

The number of total configurations is computed considering
all the possible ways to choose n points on an area of
p pixels allowing collisions, that is, selecting n elements
from a set of p elements allowing repetitions (dispositions
with repetitions: pn).
Calculating the number of config with exactly k collisions

is performed in three steps.

(1) Compute all the possible ways of selecting n− k non-
colliding points from p pixels, that corresponds to se-
lecting n−k elements from a set of p elements without
collisions, (combinations without repetitions), that is,(
p
n−k

)
.

(2) For each of the above combinations, compute all the
possible ways of hitting k times one or more of the
n − k non-colliding points in order to obtain exactly
k collisions, that corresponds to selecting k elements
from a set of n − k elements with repetitions (combi-

nations with repetitions):
(
n−k+k−1

k

)
.

(3) Step 2 computes combinations; since we are interested
in dispositions, we calculate the permutations (PERM)
of these combinations. Because of the variable number
of duplicates (e.g., it is possible to have k collisions
hitting k+1 times the same pixel pi, or k times pi and
two times pixel pj, or k−1 times pi, two times pixel pj,
and two times pixel pk and so on) it is not possible to
express such permutations through a closed formula
and we computed it through a C program.

Figure 2 Plotted functions showing the behavior of overplot-
ting as the number of plotted points increases.

From the above expressions we computationally derived
a series of functions (see Figure 2) showing the behavior
of the observed area as the number of plotted points in-
creases. More precisely, on the y-axis we have:

• the mean of colliding elements k (as n percentage);
• the used space (as p percentage);
• the free space (as p percentage).

w.r.t. the number of plotted points n (x-axis, as p percent-
age). For example, if we have an area of 8×8 pixels (p=64),
the figure tells us that plotting 128 (n=128) points (200%
of p) we foresee an average of 72.5 (56.7% of n) collisions
and, as a consequence, 8.5 free pixels (d = 64 − (128 −
72.5)=8.5) (13.4% of p). As the number of plotted points
n increases, the percentage of collisions increases as well,
while the free space decreases.
Using this graph we can derive several useful and ob-

jective indications on the degradation of an image. As
an example, the graph tell us how much we are satu-
rating the space or if the display is able to accurately
represent relative densities and, consequently, how much
to sample the data to guarantee a prefixed visualization
quality.

Data density and represented density
The previous results give us a way to measure and, conse-
quently, control the number of colliding elements. Before
describing quality metrics and optimization strategies, we
need to clarify our scenario and to introduce new defini-
tions. In particular, we need to differentiate the measure-
ment of density in the data space from density in the de-
vice space.
We assume the image is displayed on a rectangular area

and that small squareas of area A divide the space in m× r
sample areas (SA) where density is measured. Given a par-
ticular monitor, the resolution and size affect the values

Information Visualization



Overplotting reduction with random data sampling Enrico Bertini and Giuseppe Santucci
100

used in calculations. In the following we assume that we
are using a monitor of 1280 × 1024 pixels and size of
13′′ × 10.5′′. Using these figures we have 1,310,720 avail-
able pixels and if we choose SA of side l = 0.08 inch, the
area is covered by 20,480 (160× 128) sample areas whose
dimension in pixels is 8× 8.
For each SAi,j, where 1� i�m and 1� j� r, we calculate

two different densities: data density and represented density.
Data density is defined as Di,j = ni,j/A, where ni,j is the

number of data points that fall into sample areas Ai,j. For
a given visualization, the set of data densities is finite and
discrete. In fact, if we plot n data elements, each SAi,j
assumes a valueDi,j within the set 0,

1
A,

2
A, . . . ,

n
A . For each

distinct value we can count the number of sample areas
characterized by that value, obtaining the data density
distribution.
Represented density is defined as RDi,j = pi,j/A, where pi,j

is the number of distinct active pixels in SAi,j. The number
of different values that a represented density can assume
depends on the size of sample areas. If we adopt sample
areas of 8 × 8 pixels, the number of different not null
represented densities is 64.
Data densities are measured in a continuous space,

while represented densities in a discrete one; because
of collisions, the number of active pixels on a sample
area SAi,j will likely be less than the plotted points so
RDi,j�Di,j.

The user study
This section describes the studies we performed to under-
stand what is the minimum difference in active pixels be-
tween two sample areas that allows for perceiving a den-
sity difference. Moreover, we investigated a second issue:
does the distance between two different areas influence
the users’ density perception?
To answer these questions we performed two studies

based on a comparison strategy,34 one investigating the
first question, and the other one challenging the figures
coming from the first experiment against the distance
issue.
It is worth noting that our approach, even if based on

dot-stimuli, differs from the ones discussing numerosity
discrimination for three main aspects:

(1) Area size. Our technique requires to investigate den-
sity perception in very little areas; typical numerosity
discrimination studies use wider areas, spanning sev-
eral degrees and, as a consequence, it is not immedi-
ate to apply the presented results to our environment
(the least area considered while studying size invari-
ance in Allik et al.2 spans 40′ of arc; a sample area of
8× 8 pixels spans 13′ of arc);

(2) Dot nearness. We are considering small areas and pix-
els that very likely may touch, producing continu-
ous patterns and saturation. Density and numeros-
ity studies consider ideal dots without saturation and
adjacency.

Figure 3 Testing numerical differences issues.

(3) Exposure time. Most of the available studies involve
a very short exposure time (typical values are less
then a second) while the real usage of our visu-
alization allows for a virtually infinite exposure
time.

These differences pushed us to design an ad-hoc experi-
ment, investigating on little areas with adjacent pixels.
In order to reduce the experiment complexity we did not
consider pattern issues and we used monochromatic pix-
els, neglecting the color influence on density perception.4

As a consequence, while the experiment results fits quite
well the objective of our proposal, generalize them is not
a trivial task.
We involved 38 people in the user study (25 males and

13 females, ranging between 23 and 46) asking the subject
needing glasses to wear them. According to the first objec-
tive, we asked the users to recognize few more dense areas
on a uniform background (basis), repeating the test for
different bases and different density differences. A typical
experiment step is depicted on Figure 3. The image con-
tains 100 sample areas, 97 of which filled randomly with
the same number of active pixels (basis) while the remain-
ing 3 are filled with extra pixels (�). In the example, the 97
sample areas are filled at 20% (basis= 20) of their capacity
and the 3 densest contain 150% more pixels than the ba-
sis (�=150); in the figure, the user identified and selected
the uppermost densest sample area. A preliminary pilot
study showed us that the � values we were looking for
depend on the basis and, in order to cope with this issue,
we arranged the experiment as follows. All the users were
presented (i.e., we performed a within-subjects experi-
ment) with 11 steps, corresponding to having the 97 equal
sample areas progressively filled at 5,8,10,20, . . . ,90%
of the sample area capacity. For each step, five substeps
were performed, each of them showing three denser
sample areas characterized by five increasing �i. The
users were asked to select, for each substep, the three
densest areas and the program recorded attempts and
errors.
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Figure 4 The user study results (all values are in percentages).

The results are collected in Figure 4. The two tables on
the left show in each column a different basis (5, . . . ,90)
expressed as percentage of active dots with respect to the
capacity of the sample ares. Each row represents the in-
cremental steps adopted in the test. For each increment
D the tables show the corresponding recognition percent-
age R expressed as percentage with respect to the basis. As
an example, the third column tells us that, while evalu-
ating a basis of 10%, we asked the user to identify sample
areas containing 55, 65, 75, 85, and 95% extra pixels and
that the recognition rate was 62, 77, 82, 92, and 97%,
respectively. The table on the right shows, for each basis,
the increment that produced a successful recognition rate
greater than 70%. Linearly interpolating these values we
derived a function minimum�(RDi,j) returning the mini-
mum increment a sample area must show to be perceived
as denser than SAi,j (see the graph in the lower right of
Figure 4).
The results of this first test were used as input for the

second one. The users were presented with couples of
sample areas ranging on the same 11 steps of the first ex-
periment and differing in density exactly of minimum�().
The same couple was presented five times to the users in
a random fashion and at variable distance and the users
were asked, for each step, to select the denser area. A
typical experiment step is depicted on Figure 5. We run
an ANOVA test but we could not find any statistically
significant difference, therefore, in our context, we con-
sider distance as having no influence in the perception
of density differences.

Figure 5 Testing distance issues.

Quality metrics
In this section we provide several quality metrics. Some
of them are intended for measuring the absolute image
degradation, that is, the metrics provide a way to evaluate
the collision percentage, the fraction of the screen bearing
not acceptable distortion, and the data percentage that
is affected by visual degradation; other ones, computed
through a weighted algorithm, focus on distorted areas
and provide an indication on how many density differ-
ences are still visible in the displayed image. Moreover,
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since we sample the data that generates the image, we
need to measure the negative effects of such an activity
as well.
The complete list of the involved parameters is the

following:

• the overall number of points being plotted, n;
• the display area size, in terms of number of pixels,
x_pixels, y_pixels;

• the squared sample areas size in terms of number of
pixels, l_pixels;

• the number of collisions k per sample area (SA) (as de-
fined in the section on Modeling density);

• the data density and the represented density (as de-
fined in the section on Data density and represented
density).

The first quality metric we provide is the following:

PPr (Points Pixels ratio)= n

x_pixels × y_pixels ,

that gives the measure of how much we are overplotting
the screen.
This measure provides an overall information about the

image degradation but it is not able to capture local distor-
tions. As an example, if we apply it to Figure 1, displayed
on a 600× 600 pixels area, we obtain quite a good value,
0.43, denoting that pixels are more than twice the plot-
ted points. The problem is that overplotting is associated
with a very little area; the following metrics are thought
to discover such kinds of distortions. First of all we want
to measure the percentage of distorted points:

CPr (Collisions Points ratio)= k

n
,

that gives the measure of the overall collisions/points
ratio.
Still referring to Figure 1, such a metric is equal to 0.73:

roughly speaking, we can say that 73% of the data set
is colliding. What we still miss is the information about
the screen percentage bearing such a distortion. To this
aim, we introduce a threshold value � that allows for dis-
tinguishing acceptable crowded SAs from non-acceptable
ones. To fix the idea, we can state that we cannot bear
SAs showing more than 32% of collisions w.r.t. l_pixels ×
l_pixels (that, according to Figure 2 corresponds to an over-
plotting of 161 %). Obviously, the lower this value the
better the image and � is a parameter that allows for fine-
tuning the algorithms described in the section on Sam-
pling the data set.
Using � we can define the following metric:

BGSAr (Bad Good SA ratio)= # of SA showing k>�
# of SA

,

that gives the measure of the screen percentage affected
by a non-acceptable distortion; in our example, BGSAr is
equal to 4% (the area very close to the axes origin). In
order to measure the data percentage belonging to such a

distorted area we define the following metric:

CPPr (Crowded Points Points ratio)

= Number of points falling in a SA showing k>�
n

.

CPPr in our example is equal to 70%, a very bad value.
Combining the last twometrics we can say that 70% of the
data set is represented in a very small (4%) and crowded
area.
Summarizing, we can say that while the screen dimen-

sion should nicely bear the image (PPr=0.43)we are exper-
imenting a very high number of collision (CPr=0.73) that
are concentrated in a very small screen area (BGSAr=0.04)
and that most of the data points (CPPr=0.70) are not ad-
equately represented (w.r.t. � = 32%).
Till now we focused on collisions and distorted areas;

now we concentrate on relative densities, measuring the
lost density differences through the metric LDDr (Lost
Data Densities ratio). This metric is calculated comparing
couples of sample areas and checking whether their rela-
tive data density (D) is preserved or not when considering
their represented density (RD).
Introducing the Diff(x, y) function defined as:

Diff(x, y)=


1, if x>y
0, if x= y
−1, if x<y

we define the match(i, j, k, l) function that returns true iff
Diff(Di,j, Dk,l)= Diff(RDi,j, RDk,l).
To produce a measure, we apply an algorithm that con-

siders all the couples of Distorted SAs (DSA), comparing
their D and RD through the Diff function and counting
the non-matching pairs.2 Moreover, in order to take into
account the relevance of a comparison between two sam-
ple areas, we weight each comparison using the number
of points falling in the two sample areas.
In pseudo-code, the algorithm is:

function LDDr(){
Let DSA[m][r]; \* distorted sample areas
Let couples= 0; \* weighted couples of
distinct distorted sample areas
Let sum= 0; \* weighted non matching
couples of distinct distorted sample areas
for each distinct pair(DSA[i][j],
DSA[k][l]){
couples = couples + pt(DSA[i][j])
+ pt(DSA[k][l]);
if ( NOT match(i, j, k, l) )
sum = sum + pt(DSA[i][j])+ pt(DSA[k][l]);}

return (sum / couples);},

where pt(SAi,j) returns the number of data points falling
in a SA.

2We count non-matching pairs to produce a metric that be-
haves as the other ones: high values of the metric correspond to
a bad situation
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The variable sum contains the number of weighted non-
matching couples encountered during the iterations; di-
viding it by the weighted total number of possible distinct
distorted couples we obtain the weighted percentage of
non-matching sample areas ranging between 0 and 1 (the
lower the better).
The main drawback of this metric is that it uses numer-

ical differences between sample areas to decide whether
a data density difference is well represented or not by
the corresponding represented densities. As an example,
a sample area containing 55 active pixels is considered
denser than another one containing 54 active pixels while
both of them look the same to the end user.
The function minimum�( ) defined at the end of Section

on User study allows for defining the PDiff(x, y) (Percep-
tual Diff) function as a modification of the above intro-
duced Diff(x, y) function:

PDiff(x, y)=


1, if x�y + y × minimum�(y)
−1, if y�x+ x× minimum�(x)
0, otherwise

.

Using the PDiff function within the match function, we
obtain the PLDDr (Perceptually Lost Data Densities ratio)
metric. In this way, the quality metric deals with user per-
ceptible vs numeric density differences.
In order to better understand the difference between

the two metrics, we apply them against the example in
Figure 1. Using the pure numeric metric, LDDr (with � =
32%), we obtain the reasonable value of 0.29, meaning
that in the distorted area about 71% of the data points are
presented correctly in the image (i.e., their relative density
is preserved in the final image). If we consider, by contrast,
the PLDDr metric we obtain a worse (but more realistic)
value, 0.57, meaning that in the distorted area only 43%
of the data points are presented correctly. That implies
that the pure numeric metric counts a great number of
‘fake’ density differences not perceivable by the users.
Finally, we have to consider the negative effects of the

sampling activity; through the following metric we mea-
sure the portion of the screen that has been emptied by
the sampling.

ESAr (Erased SAs ratio)

=
number of empty SA after sampling

−number of empty SA before sampling
number of SA

The abovemetrics give some precise clues about the image
degradation and, in the following, we provide some gen-
eral examples of how to exploit them; more formal usage
of such metrics is presented in the section on Sampling
the data set.

(1) Given a data set and a prefixed display area size, it is
possible to check the quality figures against a prede-
fined set of threshold values and, in case of violation,
to sample the data until all the threshold are satisfied

(details about how and how much to sample are pro-
vided in the section on Sampling the data set);

(2) Given a data set and a set of threshold values, it is pos-
sible to compute the minimum display area size pre-
serving all the threshold values, allowing the system
to optimize the screen usage;

(3) Given a data set and a prefixed display area size, it
is possible to devise a non-monotonic quality index,
that is, a linear combination of two or more contrast-
ing quality indexes (e.g., ESAr and BGSAr) or an in-
herently non-monotonic quality index (e.g., PLDDr)
and to choose the sample ratio that minimizes such a
quality index.

Sampling the data set
In this section we introduce two sampling strategies,
namely uniform sampling and non-uniform sampling. We
apply them against the metrics introduced in the section
on Quality metrics. In the following examples we use the
monotonic CPr and the non-monotonic PLDDr metrics
as representative cases; the same approach can be applied
considering the other quality metrics.

Uniform sampling
Uniform sampling presents twomain advantages: it is easy
to implement and preserves the intensity of density differ-
ences; on the other hand, to reveal density differences in
very crowded zones requires a sample ratio that destroys
data in faint areas.
Using the quality metrics introduced in the section on

Quality metrics we can measure, for a given sampling fac-
tor, the quality of the generated image and than we can
estimate the minimum amount of sampling to apply to
produce an ideal final representation. For single, mono-
tonic metrics the approach is quite straightforward: we
choose a quality threshold and we sample the image as
much as needed to satisfy it. As an example, using the
image shown in Figure 1, displayed on a 600 × 600 pix-
els screen, assume that we want to generate a new image
presenting a CPr�0.6 (against the initial value 0.73). Ap-
plying decreasing sampling factors we find that 40% is the
first value that satisfies the constraint (CPr = 0.598).
Conversely, we may decide to not sample the data and

to enlarge the image to 976 × 976 pixels (CPr = 0.597).
Such examples clarify the first two ways of exploiting the
metrics discussed at the end of the section on Quality
metrics.
If we are dealing with non-monotonic metrics (e.g.,

PLDDr), or with a linear combination of metrics showing
opposite behavior (e.g., ESAr and BGSAr), we have to fol-
low a different approach, looking for the sampling factor
that minimizes the function. As an example, still referring
to data on Figure 1, let us assume that we want to mini-
mize the PLDDrmetric that, for the original image is equal
to 0.43. If we apply ours algorithm we obtain the optimal
sample ratio of 22% and the PLDDr metric reaches the
minimum value of 0.19.
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Figure 6 A screen area made of 100 sample areas: data density (A, B) and represented (C, D) density.

Non-uniform sampling
Applying the same amount of sampling to the whole im-
age is straightforward but presents several drawbacks. For
instance, to sample areas presenting very low data density
is useless and potentially dangerous, because empty areas
may appear where data was previously plotted.3 In addi-
tion, in some cases the user is interested in discovering as
many density differences as possible, neglecting their in-
tensity. Therefore, we introduce a novel non-uniform sam-
pling approach which is able to (a) preserve low-density
areas and (b) to show to the user a greater number of den-
sity differences.
The main idea is to apply a different sample ratio to

each sample area, to obtain a suitable represented density
distribution. In fact, the problem of preserving relative
densities can be challenged altering the mapping between
the set of the actual data densities and the set of avail-
able represented densities; while the uniform sampling

3 This problem is captured by the ESAr metric that can be com-
bined with other metrics to find out optimal uniform sampling
values.

approach alters the mapping in linear way, non-uniform
sampling forces different data densities to be represented
on the same represented density, through different sam-
pling ratios. Moreover, because the numerical differences
are not always perceived, as discussed in the section on
User study, we need to fine tune our technique exploiting
the user study results.
In the following we use an artificial numeric example

to explain our approach; next section will provide a real
example. For the sake of the clarity, we present our tech-
nique in two steps: first we describe our algorithm using
numerical differences and, later, we introduce the percep-
tual modifications.

The numerical algorithm Let us assume we are plotting
points on a 40×40 pixel screen arranged in 100 4×4 sam-
ple areas. In the example we concentrate on the number
of data elements or active pixels neglecting the SA area
(what we called A), that is just a constant. In Figure 6A the
data densities (in terms of number of points) correspond-
ing to each sample area are displayed.
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Figure 7 Data density distribution split algorithm.

Figure 6B shows the data density distribution; as an ex-
ample, we can see that the maximum data density 56 is
shared by five sample areas. Figure 6C, obtained by ap-
plying the statistical results discussed in the section on
Modeling density, shows the actual represented density
(in terms of active pixels) ranging, for each SAi,j, between
1 and 16; Figure 6D shows the represented density distri-
bution.
Comparing the data densities with the represented den-

sities we discover that 41% of the visualization pane rang-
ing between 30 and 56 data density collapsed on just three
different represented data densities (14, 15, and 16).
In order to improve such a situation we compute a new

mapping among the existing data densities and the 16
available represented densities.
To obtain such a result, starting from the data den-

sity distribution (Figure 6B), we split the x-axis in 16
(i.e., the available represented densities) intervals, each
of them containing the same number of SAs, that is,
6.25 = (100/16). Because we are working on discrete val-
ues, we cannot guarantee that the average value is 6.25
and, as a consequence, we use an algorithm that mini-
mizes the variance. After that, the SAs belonging to inter-
val i are sampled to produce a represented density equal
to i, as depicted on Figure 7. In the example, the first
interval encompasses six SAs with data density 1 and no
sampling is required. The second interval encompasses
three SAs with data densities 2, one SA with data densities
3, and four SAs with data densities 4; they are sampled as
much as needed to produce a represented density equal
to 2. The third interval encompasses SAs with data den-
sities 5, 6, and 7 that are sampled as much as needed to
produce data density equal to 3, and so on.
The represented densities resulting from this approach

are depicted in Figure 8A; Figure 8B shows the new, more
uniform density distribution. In this new representation
the 41% data densities that collapsed on just three differ-

Figure 8 The distribution of represented density obtained by
applying non-uniform sampling.

ent values (14, 15, and 16) now span on the interval be-
tween 10 and 16. On the other hand, as an example of the
distortion introduced by the method, the difference be-
tween data densities 25 and 11 (2.27), previously mapped
on represented densities 8 and 13 (1.62) is now mapped
on 5 and 8 (1.60).

Perceptual issues We can say that the algorithm tries to
maximize the number of density differences through a
uniform represented density distribution. But, as pointed
out in the section on the User study, this trail of thoughts
does not take into account that numerical differences
below a certain threshold are not perceived, so it makes
no sense to use all the possible represented densities. For
a given sample area size, using the results presented in
the section on User study, it is possible to compute the
largest ordered subset of represented densities values that
are perceived as different by users. We call them perceptual
densities.
As a numerical example, considering the more real-

istic case of 8 × 8 pixels SAs used in the next section,
we devised the figures depicted in Table 1. Starting from
the first perceptual density 1 we computed, using the
minimum�() function, the second perceptual density:
1 + minimum�(1) = 2; in a similar way we computed the
third one as 2 + minimum�(2) = 4, and so on. The table
shows, on the right part, the 14 perceptual densities; for
each of them the left part groups the represented densities
that collapse on the perceptual ones. According to this
result, the algorithm described so far proceeds taking into
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Table 1 Represented densities mapped to perceptual
densities.

Rep density Perceputal density

1 1
2,3 2
4,5,6 4
7,8,9,10 7
11,12,13,14,15,16 11
17,18,19,20,21,22,23 17
24,25,26,27,28,29,30,31 24
32,33,34,35,36,37,38 32
39,40,41,42,43,44,45,46 39
47,48,49,50,51,52 47
53,54,55,56,57 53
58,59,60 58
61,62,63 61
64 64

account only the perceptual densities while splitting the
data density distribution axis. That corresponds, in the
case of 8 × 8 pixels SAs used in the following examples,
to consider only 14 intervals instead of 64 and sampling
the SAs belonging to the interval i in order to produce
a represented density equal to the ith perceptual den-
sity. As an example, all the SAs belonging to the 5th
interval are sampled to produce a represented density
equals to 11.
Roughly speaking, we can think of the whole process as

follows. We have at disposal p different represented densi-
ties that are matched against k data densities where, likely,
k  p; that implies that each represented density is in
charge to represent several different data densities, hiding
differences to the user. The strategy consists in changing,
with sampling, the original data densities, altering their
assignment to the p represented densities to maximize
the number of correctly represented density differences.
Moreover, since the problem of perceptual differences is
recognized, we apply the algorithm not to all the p repre-
sented densities but to the subset of them that produces
the maximum number of perceivable density differences,
that is, the perceptual densities.

An example with a real dataset
In this section we apply our techniques against the
data set used in the section on Uniform sampling: the
one containing 160,000 mail parcels (displayed on a
304 × 304 screen and using 8 × 8 pixels SAs). Note
that the images used in this section have the same di-
mension of the screen shots they come from, in order
to preserve, as much as possible, the original visual
feeling.
Figure 9 shows the original, crowded, visualization (no

sampling) while Figure 10 shows the same image enlarged

Figure 9 Original image (304× 304 pixels).

Figure 10 Enlarged original image (864× 864 pixels).

enough to show most of the details of the crowded area.
More precisely, the original image is characterized by the
following figures: CPr = 0.80, BGSAr = 0.149, and CPPr =
0.79 while the enlarged one presents the following values:
CPr=0.51, BGSAr=0.01, and CPPr=0.34. Note that the en-
larged image is provided for reference purposes: it shows
the data insights that the sampling algorithms should
reveal.
Figure 11 shows the results of the best uniform sampling

algorithm minimizing the PLDDr metrics: the algorithm
discovered aminimumwith a sampling factor of 22%. The
sampling makes evident the clusters close to the origin
and the clusters very close to the x-axis. On the other
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Figure 11 Uniform sampling: (A) original image; (B) best uni-
form sampling.

hand, the faint zones in the uppermost part of the images
are badly represented.
Conversely, Figure 12 shows the result obtained ap-

plying the perceptual non-uniform sampling algorithm.
High-density areas present more density differences than
both the original image and the one obtained with the
best uniform sampling. The PLDDrmetric, measuring the
perceptually lost density differences, confirms the visual
impression: it is equal to 0.43 against the original value
0.63 and the one obtained using the best uniform sam-
pling algorithm 0.51. Moreover, the algorithm does not
alter low-density areas that are represented as they ap-
pear on the original image. We can say that the non-
uniform sampling produces the advantages of both strong
and weak sampling: crowded areas are sampled enough
to show interesting patterns, as happens with strong sam-
pling, faint areas remain quite untouched, as happens
with weak sampling.

Figure 12 Non-uniform sampling: (A) original image; (B) per-
ceptual non-uniform sampling.

Working prototype and implementation
To validate our ideas and tune up the parameters of our
methods we developed an analysis and inspection tool
that permits to calculate metrics and to apply sampling
algorithms. The basic functionalities of the system are:

• Quality metrics computation – The user can inspect a list
of quality metrics associated with the current visualiza-
tion;

• Sampling algorithms execution – The user can run both
uniform and non-uniform sampling algorithms. While
using uniform sampling, s/he can either interactively
sample the image or set some metric thresholds forc-
ing the systems to return the sampled image satisfying
them;

• Interactive image inspection – It is possible to use dynamic
filters on sample areas. For instance, it is possible to
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interactively filter out or brush sample areas with num-
ber of values above/below a given threshold.

In case of interactive activities, the system memorizes the
intermediate results reusing them in order to save time
and avoiding pixel flickering. As an example, the system
allows for manually sampling the data at different ratio
(1.99%). This is obtained assigning, once for all, to each
data element a random integer ranging between 1 and
100. Sampling to 23% is obtained discarding all the ele-
ments whose associated integer is greater than 23. In this
way, if the user browses different sampling ratios, redis-
playing the same sampling percentage more times, s/he
will be presented with continuously and homogenously
changing images.
The sampling algorithms work in a one-shot fash-

ion, switching back and forth between the original im-
age and the sampled one. In order to maintain visual
continuity, data samples are collected only once when
the algorithm runs for the first time. When the user
swap to the original visualization and back again to the
sampled one, the representation stays the same, thus
achieving visual consistency. A specific function is pro-
vided to explicitly request for a new ‘fresh sample’ when
needed.
These implementation details are relevant when using

the system for exploration activities. It is worth to note,
in fact, that our methods can be used to detect poten-
tially interesting patterns by moving back and forth from
the original and the final image, and changing the avail-
able settings (we often informally noticed this kind of
patterns while using the tool) in an explorative fashion.
When this happens, visual continuity and consistency
obtained through the solutions outlined above, become
crucial.

Extensions of our approach
The work presented in this paper deals with 2D scatter
plots using monochromatic points; it is our opinion,
however, that it is possible to extend our approach to
other Infovis techniques (e.g., scatter plots using colors
and shapes, parallel coordinates, etc.); however, such an
activity is not a trivial task and the aim of this section
is to describe the overall methodology and the involved
challenges.
Extending our approach can be done pursuing two

different methods. The first one, useful when the target
visual representation is very far from scatter plots, is to
devise a bidirectional mapping between the visual rep-
resentation and a scatter plot: first we transform the
representation in a scatter plot, after that we apply the
sampling algorithms, and finally we step back to the
original visualization. We applied this strategy to paral-
lel coordinates, obtaining quite encouraging results (see,
e.g., Bertini et al.35); however, the overall approach is not
mature enough and it is out of the scope of this paper
to discuss it. The second method is based on the idea of

redefining our concepts (data density, represented density,
density estimation, etc.) in term of the new target visual-
ization, applying our algorithms directly on it. Again, our
results are very preliminary; however, in our opinion, it is
interesting to provide an overview of the problems and
the challenges we are dealing with while trying to extend
our approach to 2D scatter plots using shapes and colored
dots.

• Sample area size. While the use of color does not affect
this issue, the size of the sample areas must be increased
according to the shapes’ dimension. It is not clear (1)
how much and (2) what is the effect of this new size on
the uniform distribution assumption.

• Collisions. Both colors and shapes require a new way of
defining and handling collisions. Concerning colors, if
the colliding points are of different colors a strategy for
assigning the resulting color is needed. A discussion of
the matter is in14 and a reasonable choice is to select
the color that occurs most frequently in the collision.
Considering shapes, the definition of collision is based
on the idea of computing the percentage of overlap-
ping area between two shapes and the resulting notion
of collision can be either binary or fuzzy. In the first
case, a collision happens when the overlapping percent-
age is more than a threshold; obviously, the threshold
value is a critical parameter and its definition requires a
non-trivial analysis, involving user studies. On the other
hand, it is possible to weight each collision with a value
corresponding to the normalized value of the overlap-
ping areas. The way of considering these different col-
lisions while computing the quality figures is, again, a
non-trivial task.

• Data and represented density definition. For colored points
both data and represented density require to take into
account the color distribution; moreover, because of
density perception is strongly affected by the involved
colors,4 user studies and perceptual metrics require a
new, non-trivial, definition. Considering shapes, a sim-
ple approach foresees to apply the same definitions
provided for points considering the shapes’s barycen-
ters falling within a sample area. A more precise cal-
culation is based on the idea of computing, for each
shape, the area percentage falling within a sample
area.

• Density estimation. The probabilistic formulae must be
(non-trivially) revised considering color distribution
and that, in case of shapes, we have to take into ac-
count collisions belonging to a sample area generated
by adjacent sample areas.

Conclusion and future work
In this paper we presented two complementary combi-
natorial sampling techniques, uniform and non-uniform
sampling, that aim at automatically dealing with over-
plotting in 2D scatter plots. The techniques exploit some

Information Visualization



Overplotting reduction with random data sampling Enrico Bertini and Giuseppe Santucci
109

statistical results and a formal model describing and mea-
suring overplotting, screen occupation, and both data
density and represented density. Such a model allows
for defining precise and sound quality metrics that are
used for: (a) measuring in an objective way the degrada-
tion of several data characteristics and (b) computing the
right amounts of sampling to apply in order to guarantee
some quality parameters. The overall formal framework
takes into account the results of ad-hoc user studies pro-
viding precise figures about the perception of density
differences.
We are actually trying to extend our approach to other

Infovis techniques; the issues rising from such an activity
have been described in the previous section.
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